Meet the Makers

9/26/2013 8:00:00 PM

The next revolution in education will be made, not televised.

Here is what happens when you ask two Tech & Learning advisors to trade notes on one of the fastest-moving phenomena in education technology. Sylvia Martinez (SM) recently co-authored Invent To Learn: Making, Tinkering, and Engineering in the Classroom. Dr. Gary A. Carnow (GC) is Chief Propellerhead of Prolific Thinkers and the former CTO of Pasadena Unified School District. He is also the co-author of multiple edtech books. Both are excited about the Maker Movement. Read why you should be, too:

 
Sylvia Martinez

GC: I shudder when I hear that my local school is now reinventing itself as a STEM or STEAM school. STEM or STEAM is an interesting label, but it limits what is happening across the world outside of traditional educational institutions. A growing army of empowered parents and creative teachers are banding together in Maker Faires. What is this Maker Movement and why does every reader of Tech & Learning need to know about it?

SM: A number of reasons. First, it’s a global technological and creative revolution. Some very smart people are predicting that the tools and technology of the Maker Movement will revolutionize the way we produce, market, and sell goods and services worldwide. Want a new watch? Don’t ship it across the world, just print it out! Better yet, design it yourself and then print it out. Something this epic should be on every educator’s radar.

Next, the Maker Movement advocates a “Do It Yourself” or DIY attitude towards the world and problems that need solving. Learning to use what you’ve got and “give it a go” are valuable mindsets for young learners.

Plus it’s cool! Makers worldwide are developing amazing new tools, materials, and skills and inviting the whole world to join in the fun. Using gee-whiz technology to make, repair, or customize the things we need brings engineering, design, and computer science to life.

Finally, the Maker Movement overlaps with the natural inclinations of children and the power of learning by doing. For educators, I believe that being open to the lessons of the Maker Movement holds the key to reanimating the best, but oft-forgotten learner-centered teaching practices.

 
Gary A. Carnow

Global Maker Faires and a growing library of literature inspire learners of all ages and experience levels to become inventors and seize control of their world. Online communities serve as the hub of a global learning commons, allowing people to share not just ideas, but the actual codes and designs for what they invent. This ease of sharing lowers the barriers to entry, as newcomers can easily use someone else’s codes or designs as building blocks for their own creations.

However, at the Maker Faires I’ve been to, I’ve met countless parents who say to me (as they watch their child happily soldering, building with LEGO, or programming robots) “School is killing my kid.” And unfortunately, I know what they mean. We can and must do better, not just for the empowered parents who can take their child to a Maker Faire, but for all children.

GC: The Maker Movement, according to Wikipedia, stresses “new and unique applications of technologies, and encourages invention and prototyping. There is a strong focus on using and learning practical skills and applying them creatively.” What does that mean for classrooms today?

SM: The new Next Generation Science Standards makes explicit calls for meaningful assessment, interdisciplinary knowledge, creativity, inquiry, and engineering. Specifically, we must change how schools approach science and math.

In too many cases, science and math have been stripped of practical applications because of a false premise that practical math is only for students who don’t go to college. This is a recipe for disaster and I think we see the results in students who gradually lose interest in STEM subjects over the years. We cannot and must not continue to pretend that success in STEM subjects means memorizing the textbook.

Making is a way of bringing creativity, authentic design thinking, and engineering to learners. Tinkering is the process of design, the way real scientists and engineers invent new things. Such concrete experiences provide a meaningful context for understanding abstract science and math concepts while often incorporating esthetic components. Creating opportunities for students to solve real problems, combined with imaginative new materials and technology, makes learning come alive and cements understandings that are difficult when only studied in the abstract.

We must bravely reintegrate actual labs and design into science. We must be able to answer a math student who asks, “Why do I need to know this?” (And the answer should never be, you’ll need this next year.) We must reinvent classrooms as places where students ARE inventors, designers, scientists, and mathematicians TODAY. Making is the avenue to this reimagination of 21st century education.

GC: Your background is engineering. I began my career as a teacher of gifted children. We both subscribe to MAKE Magazine. Where do teachers, parents, students, and administrators, or for that matter anyone who is interested in providing meaningful experiences for students, begin?

SM: In his 2005 book, Fab: The Coming Revolution on Your Desktop—from Personal Computers to Personal Fabrication, MIT Professor Neil Gershenfeld described the next technological revolution as one in which people would make anything they need to solve their own problems. Gershenfield predicted that for the cost of your school’s first computer, you would have a Fabrication Lab or fab lab—a mini high-tech factory—capable of making things designed on a computer. This prediction is now reality.

In our new book, we identify three aspects of the making revolution that are game-changers for schools. All of these are accessible and affordable today. Any of these are great places to begin:

Computer controlled fabrication devices: Over the past few years, devices that fabricate three-dimensional objects have become an affordable reality. These 3D printers can take a design file and output a physical object. Plastic filament is melted and deposited in intricate patterns that build layer by layer, much like a 2D printer prints lines of dots that, line by line, create a printed page. With 3D design and printing, the ability for students to design and create their own objects combines math, science, engineering, and craft.

Physical computing: New open source microcontrollers, sensors, and interfaces connect the physical world to the digital world in ways never before possible. Many schools are familiar with robotics, one aspect of physical computing, but whole new worlds are opening up, such as wearable computing. Wearable computing, soft circuits, and e-textiles use conductive thread and tiny mobile microprocessors to make smart textiles and clothing. Other kinds of new microprocessors, like Arduinos, combine with plug-and-play devices that connect to the Internet, to each other, or to any number of sensors. This means that low-cost, easy-to-make computational devices can test, monitor, beautify, and explore the world.

Programming: There is a new call for programming in schools, from the Next Generation Science Standards to the White House. Programming is the key to controlling this new world of computational devices and the range of programming languages has never been greater. Today’s modern languages are designed for every purpose and every age.

The common thread here is computation. The computational potential of these technologies, tools, and materials elevates the learning potential beyond craft projects. Of course there are things to be learned from building with cardboard or Popsicle sticks and in our book we discuss ALL kinds of making and makerspaces for learning. But computation is the game-changer that should make educators sit up and take notice.

All of these experiences and the materials that enable them are consistent with the imaginations of children and with the types of learning experiences society has long valued. Making is a stance that puts the learner at the center of the educational process and creates opportunities that students may never have encountered themselves. Makers are confident, competent, curious citizens in a new world of possibility.

GC: What matters most about learning to me is not the product but the process. What I love about the Maker Movement is that makers rarely work in isolation. Making is a social activity. The Maker Movement embraces failure and believes that everyone can make. When I look back on my traditional schooling, what I remember is that I had gifted teachers who knew the power of project-based learning. I remember the projects and the process and have little memory of whatever facts I had to cram for the dreaded “pop quiz.” What brought you to the Maker Movement? Is this just the next big thing or is this the real deal?

SM: Gary, you pack a lot into your questions! What brought me to the Maker Movement is that it deeply connects with my personal reasons for becoming an engineer. I wanted to know how to solve problems—real problems in the real world, not textbook problems. I think all kids want to change the world, and the Maker Movement and Maker ethos teaches kids that they have the power to make the world a better place, NOW. They don’t have to wait for a book or a teacher to tell them what to do, because there is a whole world out there of people all trying things and sharing the results. Somebody somewhere is asking the same questions as you and by sharing the journey, we all can learn more.

I realize the attraction of always searching for the “new new thing”, the magic wand that will fix all problems. I don’t believe that the Maker Movement is a magic wand. I hope it doesn’t get turned into a buzzword. Maybe we can talk more about how to make sure the hype doesn’t overwhelm the promise of the Maker Movement in schools. However, it is my strong belief that educators who look deeply at the Maker Movement will find a wealth of new ideas and inspiration to revitalize their classrooms and give children the opportunity to touch the future.

Want to read more stories like this?

Get our Free Newsletter Here!

comments powered by Disqus
Tweets
Photo GalleriesView All Galleries >
Acer C720-2844 Chromebook

(www.acer.com) The Acer C720-2844 Chromebook model delivers speedy performance, a quick boot time of seven seconds, and a matte anti-glare display tha...

Britannica ImageQuest

(www.britannica.com) Britannica Digital Learning has upgraded ImageQuest, a resource for schools and libraries that provides nearly three million rig...

ClassFlow

(www.classflow.com) Promethean has released ClassFlow, a free, all-in-one, cloud-based teaching tool that lets teachers create and deliver interactive...

Adobe Voice

(www.adobe.com) Adobe has released Adobe Voice, an animated video app for the iPad that lets users create and share video stories. The app incorporate...

DeskBoard

(www.boxlight.com) The BOXLIGHT DeskBoard mobile cart adjusts both height and tilt for the P8 ultra short throw interactive projector on a white surfa...

Core 36M

(www.bretford.com) Bretford has introduced Core 36M, a 36-unit charging cart that is optimized for Chromebooks but which also supports most tablets, l...

Edmentum Sensei

(www.edmentum.com) Edmentum Sensei is a mobile optimized solution that helps administrators visualize and track overall school, teacher, and student p...

HMH Player

(www.hmhco.com) HMH has released HMH Player, a new native app for iOS and Google Chrome that streamlines the learning experience for improved digital ...

Juice Power System

(www.bretford.com) Bretford has unveiled an easy-to-use modular power system with exchangeable power components. The Juice Power System uses unique &#...

LightSail

(www.lightsailed.com) LightSail Education has announced a literacy accelerator that combines books with in-text embedded assessments and real-time dat...

myON

(www.myon.com) myON has expanded its digital library to include a set of literacy tools to further personalize the reading experience for students whi...

Nervanix Clarity

(www.nervanix.com) Nervanix has released Clarity, an application that monitors student attention levels as they study and guides them to revisit conce...

MathBall

(www.robotslab.com) RobotsLAB has introduced MathBall, a smart sensor basketball and tablet system that offers curricula in algebra, pre-calculus, phy...

MobileAsset.EDU

(www.waspbarcode.com) Wasp Barcode’s MobileAsset.EDU solutions include everything administrators need to account for their assets, from software...

OpenEd Assessment Creation Tool

(www.opened.io) OpenEd has announced a free tool that lets teachers easily create assessments with the question types required by Common Core standard...

Panasonic TH-80LFB70U

(www.panasonic.com) Panasonic’s TH-80LFB70U interactive LED display features high-speed, multi-touch, interactive capabilities to promote partic...

penveu interactive display system

(www.penveu.com) The penveu interactive display system is a handheld device that turns projectors and large screen displays into interactive whiteboar...

PresentationPro

(www.califone.com) Califone has updated its PresentationPro speaker. The PA310 readily connects with computers, LCD projectors, mobile devices, intera...

PowerSync+ Mobile Companion App

(www.bretford.com) Bretford Manufacturing, Inc. has announced the availability of the companion app for its PowerSync+ enabled charge and sync produc...

PureCharge Carts and Stations for iPad

(www.bretford.com) Bretford Manufacturing, Inc. has debuted the PureCharge family of iPad and iPad mini charging carts and stations. By offering pre-i...

ProQuest Research Companion

(www.proquest.com) ProQuest’s new information literacy product, Research Companion, offers videos that guide users through the research process,...

Sphere2 & Class Send Student Engagement Software Platform

(www.averusa.com) AVer Information has developed a Student Engagement platform, providing teachers and students with the tools to transmit document ca...

TabChargeCT2

(www.averusa.com) AVer has released the TabChargeCT2 charge cart solution, which can hold up to 40 Chromebooks, iPads, Android or Windows tablets, lap...

VoiceLift with Instant Alert and Emergency Video Monitoring

(www.extron.com) The Instant Alert function of the Extron VoiceLift Microphone, combined with a PoleVault, WallVault, or PlenumVault classroom AV sys...

SMART Board 6065

(www.smarttech.com) The SMART Board 6065 is an ultra HD, 4K interactive flat panel that offers collaborative capabilities while ensuring lessons run s...

Gaggle Unity Partner Program

(www.gaggle.net) The new Gaggle Unity Partner Program provides free data integration services for all educational technology vendors. Through the Gagg...

Waterford Early Learning, Reading, Math & Science

(www.waterford.org) Waterford Early Learning Cloud can be used at home or to supplement lessons in classrooms. It can also be used for individual adap...

NetSupport School

(www.netsupportschool.com) The latest version of NetSupport School allows teachers to monitor and collaborate with any mix of technology. An enhanced ...

Camtasia

(www.techsmith.com/camtasia) TechSmith’s Camtasia gives teachers the tools to record lessons, create videos, and engage their audiences. Educato...

Panasonic 3E

(www.panasonic.com) Intel has teamed up with Panasonic to announce the Panasonic 3E, which uses the Intel Education 2-in-1 reference design. Designed ...

Boston